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a b s t r a c t

A library of cold shock protein B mutant variants was employed to examine differences in protein binding
behavior in ion exchange and multimodal chromatography. Single site mutations introduced at charged
amino acids on the protein surface resulted in a homologous protein set with varying charge density and
distribution. The retention times of the mutants varied significantly during linear gradient chromatog-
raphy in both systems. The majority of the proteins were more strongly retained on the multimodal
cation exchange resin as compared to the traditional cation exchanger. Further, the elution order of the
mutants on the multimodal resin was different from that obtained with the ion exchanger. Quantita-
rotein–ligand interactions
oarse-grained simulations

tive structure–property relationship models generated using a support vector regression technique were
shown to provide good predictions for the retention times of protein mutants on the multimodal resin. A
coarse-grained ligand docking package was employed to examine the various interactions between the
proteins and ligands in free solution. The multimodal ligand was shown to utilize multiple interaction
types to achieve stronger retention on the protein surface. The use of this protein library in concert with
the qualitative and quantitative analyses presented in this paper provides an improved understanding

ltimo
of protein behavior in mu

. Introduction

The development of efficient bioseparation processes for the
roduction of high-purity biopharmaceuticals is one of the most
ressing challenges facing the pharmaceutical and biotechnol-
gy industries today. In addition, high-resolution separations
or complex bioanalytical applications are becoming increas-
ngly important. While it is generally accepted that non-specific
nteractions can often complicate single mode chromatographic
eparations (e.g. ion exchange, reversed phase), these additional
nteractions can also result in unexpected selectivities [1,2]. Recent
dvances in the design of multimodal chromatographic systems
ave produced new classes of chromatographic materials which

an provide alternative and improved selectivities as compared to
raditional single mode chromatographic materials [3–9]. Johans-
on et al. have developed a library of multimodal ligands that
an be employed for the capture of charged proteins under
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dal chromatographic systems.
© 2009 Elsevier B.V. All rights reserved.

conditions of high salts [4,5]. Liu and Pohl have developed a
silica-based multimodal resin capable of weak anion exchange
and reversed phase interactions for the simultaneous separation of
acidic, basic and neutral pharmaceutical compounds [9]. Small lig-
and pseudo-affinity chromatographic materials such as those used
for hydrophobic charge induction chromatography have resulted
in new classes of multimodal ligands which offer selectivities due
more to multimodal interactions than to specific binding to cer-
tain classes of proteins. In addition, several libraries of multimodal
ligands have been recently developed and employed on chromato-
graphic resins for screening with biological mixtures. Applications
of this technology range from preparative protein purifications
[10,11] to front end separations for mass-spectrometry analysis
[12,13]. While these new materials offer potential for biosepara-
tions, there is a lack of fundamental understanding of the nature of
binding of these ligands to protein surfaces.

The proteins used in the current study were cold shock protein
B (CspB) variants. CspB is a small, monomeric globular protein that

is found in bacteria. As it does not form multimers in solution, it
reduces the complexity when attempting to study protein behav-
ior in a range of systems. The small size of the protein (67 amino acid
residues) also makes it easier to carry out simulations and modeling
studies. A thermostable variant (CspB-TB) has also been developed

http://www.sciencedirect.com/science/journal/00219673
http://www.elsevier.com/locate/chroma
mailto:crames@rpi.edu
dx.doi.org/10.1016/j.chroma.2009.08.005
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Table 1
Classes of CspB-TB residue substitutions; retention time of variants on SP Sepharose FF; amino acid sequence of CspB-TB templates.

Native Positive → negative Positive → neutral Negative → neutral Negative → positive

Variant Retention time (mins) Variant Retention time (mins) Variant Retention time (mins) Variant Retention time (mins) Variant Retention time (mins)

Native 11.10 R3Ea 10.13 R3Qa 9.93 D24N 11.26 D10K 14.30
K12E 1.31 K5Q 9.28 E43Q 10.23 E21K 9.67
K13E 1.47 K7Q 9.40 E48Qa 10.71 D24K 10.36
K39E 8.26 K12Q 9.00 E50Qa 9.82 E43K 12.20
K42E 8.74 K13Q 8.22 E53Q 10.32 E50K 10.28
K55E 3.81 K20Qa 9.41 E53K 12.30

K39Q 9.33
K42Q 2.45
K55Q 8.78
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ative CspB-TB sequence: MLRGKVKWFD-SKKGFGFITK-EGQDDVFVHF-SAIQEMGFK
GQDDVFVHF-SAIQEGGFKT-LKEGQAVEFE-IVEGKRGPQA-AHVKVVE.
a Mutants created using the original CspB-TB as a template. All other mutants we

y Gribenko and Makhatadze [14]. It was found to be structurally
imilar to the cold shock protein in B. subtilis (CspB-Bs). Modifi-
ations to the charged regions on the surface of CspB and CspB-TB
esult in a library of mutants that have similar structure but varying
harge density and distribution.

In this study, this homologous library of CspB-TB mutants is
mployed to investigate the effects of charge modification on
rotein retention in multimodal and traditional cation exchange
ystems and a detailed comparison is carried out. Quantitative
tructure–property relationship (QSPR) models are generated using
support vector regression technique to enable prediction of the
inding affinity trends and coarse-grained simulations are used to
xamine the synergistic interactions brought about by the different
hemical species on the multimodal ligand. The use of this pro-
ein mutant library in concert with the qualitative and quantitative
nalyses presented in the paper provides an improved understand-
ng of protein binding affinity in multimodal chromatography as

ell as an elucidation of possible binding regions on the protein
urface.

. Materials and methods

.1. Materials

CspB-TB mutant variants were generated, overexpressed in E.
oli and purified as described elsewhere [14]. Mutations were car-
ied out by altering specific charged amino acids on the surface of
he protein. Table 1 lists the mutations performed. As can be seen
n the table, there were four subclasses of mutations carried out:
ositive to negative, positive to neutral, negative to positive and
egative to neutral. As described elsewhere, this library was gen-
rated from two initial forms of Csp-B-TB, mutant M36G which
as a leucine at position 1 and a glycine at position 36 and the
riginal Csp-B-TB construct which had methionine residues at the
-terminus and position 36 (sequence information for both forms
re shown at the bottom of Table 1). Mutants R3E, R3Q, K20Q, E48Q
nd E50Q were created using the original CspB-TB construct while
utants K12E, K13E, K39E, K42E, K55E, K5Q, K7Q, K12Q, K13Q,

39Q, K42Q, K55Q, D10K, E21K, D24K, E43K, E50K, E53K, E21Q,
24N, E43Q, and E53Q were constructed using mutant M36G. The
ifference between mutants expressed from the original CspB-TB
onstruct and M36G is that all mutants created from the CspB-TB
lasmid will have a methionine residue at position 1 and 36 while
utants created from the M36G plasmid will possess a glycine
esidue at these positions. A sulfopropyl Sepharose Fast Flow (SP
epharose FF) column (1 ml) and a salt-tolerant multimodal cation
xchanger (Capto MMC) column (1 ml) were used to study the
etention behavior of the homologous mutant library on the two
esin surfaces.
GQAVEFE-IVEGKRGPQA-AHVKVVE. M36G Sequence: LLRGKVKWFD-SKKGFGFITK-

ated using M36G as the template.

2.2. Equipment

Analytical linear gradient experiments were performed using a
Waters HPLC system comprising of a 600 multisolvent delivery sys-
tem, a 712 WISP autoinjector, and a 996 photodiode array detector
controlled by a Millennium chromatography software manager.

2.3. Linear gradient experiments

The mutant variants were analyzed on a GE Healthcare Capto
MMC column at pH 6.25. Linear gradient elution runs from 100%
buffer A (20 mM sodium phosphate, pH 6.25) to 100% buffer B
(20 mM sodium phosphate containing 1.5 M of sodium chloride, pH
6.25) in 60 column volumes at a flow rate of 1 ml/min were carried
out to obtain retention time data on each mutant variant. Injection
volumes ranging from 25 to 50 �l of sample were used depending
on the initial concentration of each mutant variant. Before being
injected onto the column, all protein samples were filtered using a
0.2 �m pore diameter syringe filter and diluted to a concentration
of 0.5 mg/ml using buffer A. The column effluent was monitored at
UV wavelength 280 nm and fluorescence (Ex: 300 nm, Em: 349 nm).
The variants were also analyzed on the SP Sepharose column under
the same experimental conditions, with the exception of buffer B
(20 mM sodium phosphate with 0.5 M sodium chloride, pH 6.25).

2.4. Quantitative structure–property relationship (QSPR)
modeling and SVM regression model

In order to construct a predictive QSPR model for the retention
times of the homologous protein library, the protein crystal struc-
ture of each mutant was modified using the homology modeling
program in the Molecular Operating Environment (MOE) software
from CCG (Chemical Computing Group, Inc.) [15]. Ten interme-
diate homology structure models for each mutated protein were
then built using the homology modeling program in MOE based on
the corresponding FASTA sequences. These different intermediate
homology models were the result of a permutational selection of
different loop candidates and side chain rotamers. The intermediate
homology model which had the highest score according to MOE’s
packing evaluation function was chosen as the homology model
for further optimization. Finally, a sequence of energy minimiza-
tions was performed to obtain a final optimal homology model for
each mutant in the library. Since these mutants are based on the
stable small protein CspB, it is likely that these homology models

resulted in accurate representation of the mutant 3-D structures.
The detailed procedure for the homology modeling process has
been described previously [16]. A variety of descriptors were calcu-
lated based on the three-dimensional protein structures, including
traditional two-dimensional and three-dimensional descriptors
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region on the protein surface. At position 42, an unusual phe-
nomenon was observed whereby neutralization of the positively
charged residue at this position caused more significant reduction
in retention time as compared to a reversal in the charge. This is in
W.K. Chung et al. / J. Chrom

omputed using the MOE software package [15]. In addition,
H-dependent electrostatic potential (EP) descriptors and molec-
lar lipophilicity potential (MLP) descriptors were calculated as
escribed elsewhere [17]. Invariant descriptors were then removed
y using a partial least squares for PC (PLS-PC) software pack-
ge [18]. Subsequently, a sparse linear l1-norm support vector
achine (SVM) regression algorithm [19] was applied in the fea-

ure selection of the hybrid set of molecular descriptors to identify
subset of descriptors relevant for each response. Finally, inde-

endent non-linear predictive retention SVM-QSPR models were
enerated using the descriptors from the feature selection step
nd were examined for quality and consistency (given by the
ross-validated r2 and RMSE for the training set) and predictive
bility (for an external test set of molecules not used in the feature
election or generation of the model). In this work, the original
raining set of proteins is randomly subdivided into a validation
et, with the remaining proteins used as a training subset. Mod-
ls are then created for different sets of training proteins and are
sed to make predictions on the validation set of proteins left out
f the training set. This procedure is repeated approximately 200
imes and the cumulative results are used to construct 12 distinct
ut similar models. This is termed “bootstrapping” in quantitative
tructure–property relationship modeling literature and is known
o provide better model generalization. A more detailed back-
round on QSPR theory and regression procedures are described
lsewhere [20–23].

.5. Coarse-grained ligand–protein docking simulations in free
olution

Coarse-grained docking simulations of the protein with repre-
entative ion exchange and multimodal chromatographic ligands in
ree solution were preformed using the Autodock package devel-
ped by Morris and co-workers [24,25]. To find a suitable binding
onformation a genetic search algorithm is applied to reduce the
ree energy of a randomized ligand starting position. At each
tep of the search algorithm, an empirical function, based on the
eighted summation of different energy functions, is used to pre-
ict the free energy of an adopted protein–ligand confirmation.
he energy functions used include van der Waals, hydrogen bond-
ng, electrostatics, desolvation, and torsional free energies. Each of
hese properties is given empirical weightings in the total energy
alculation determined from a fitting of known ligand–protein
nteractions. While this and other docking applications are typ-
cally used for high energy binding at a known binding site, the
ersatility of the genetic search algorithm makes it ideal for use in

lind-docking simulations where there may be several low energy
inding sites at unknown locations on the protein’s surface.

For the current study the protein was protonated according to
he experimental pH and then energy minimized using AMBER 94

ig. 1. Diagrams of (a) representative multimodal chromatographic ligand, N-
enzoyl-Methionine; (b) representative cation exchange chromatographic ligand,
-propanesulfonic acid.
r. A 1217 (2010) 191–198 193

force field parameters [26]. The ligand was built as a truncated form
of the resin ligand moiety and is shown in Fig. 1a and b for the MM
and ion exchange ligand, respectively. Docking simulations were
carried out with one protein and one ligand type at a time for both
ion exchange and MM chromatography. Each docking simulation
was performed with a large number of energy calculations (approx-
imately 27,000 generations in the genetic algorithm) in order to
assure sites of minimum energy. Further, each of these energy cal-
culations were carried out multiple times at random ligand starting
positions (100 for cation exchange and 200 for multimodal ligands).
The results of these simulations were then analyzed for visual-
ization, energetics, and cluster analysis using the AutodockTools
package of the Python Molecular Viewer program [27,28].

3. Results and discussion

3.1. Retention behavior of mutants under linear gradient
conditions on SP Sepharose FF

A library of cold shock protein B mutant variants was employed
to examine differences in protein binding behavior in ion exchange
and multimodal chromatography. All mutants were created
through single site mutations targeted at specific charged sites on
the surface of the native protein as indicated in Table 1. In order to
compare the results it is first important to examine the behavior
in traditional cation exchange chromatography which was carried
out at the same pH conditions (pH 6.25) as the multimodal exper-
iments. Table 1 presents the retention times under linear gradient
cation exchange conditions. In order to examine the elution order
of the various mutants relative to the native protein, the data is also
presented in Fig. 2.

Despite the use of a shallow salt gradient (60CV), many vari-
ants eluted with a similar retention to the native CspB at this pH.
As expected, the reversal or neutralization of a positively charged
residue in general resulted in weaker retention as compared to neu-
tralization or reversal of a negatively charged residue. Reversal of
the positively charged residues at positions 12, 13 and 55 caused
more significant reductions in retention time as compared to other
mutants in this subclass. This indicates that these three lysines
may play an important role in determining protein retention on the
cation exchanger and could possibly be part of a preferred binding
Fig. 2. Retention time profile of mutant variants on a SP Sepharose FF cation
exchange column [experimental conditions: pH 6.25, 60CV linear salt gradient
(Buffer B: Buffer A +0.5 M NaCl)].
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Table 2
Classes of CspB-TB residue substitutions; retention time of variants on Capto MMC.

Native Negative → positive Negative → positive Negative → positive Negative → positive

Variant Retention time (mins) Variant Retention time (mins) Variant Retention time (mins) Variant Retention time (mins) Variant Retention time (mins)

Native 38.24 R3Ea 1.33 R3Qa 1.58 D24N 43.83 D10K 33.30
K12E 1.5 K5Q 36.68 E43Q 48.94 E21K 42.19
K13E 19.96 K7Q 31.95 E48Qa 43.20 D24K 46.68
K39E 24.5 K12Q 24.72 E50Qa 42.1 E43K (Not eluted)
K42E 28.48 K13Q 13.62 E53Q 45.25 E50K 49.08
K55E 19.82 K20Qa 36.7 E53K (Not eluted)

K39Q 29.75
22
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K42Q 1.6
K55Q 23.8

a Mutants created using the original CspB-TB as a template. All other mutants we

ontrast to previous results from our laboratory with these same
utants which were carried out at pH 5[16].
While most mutations where a negative charge was either neu-

ralized or replaced with a positive charge had minimal effect on
he elution time, the mutant D10K exhibited a strong increase in
etention as compared to the wild type.

.2. Retention behavior of mutants under linear gradient
onditions on Capto MMC

In contrast to the weak retention of the protein library on the
ation exchange column, the proteins exhibited strong retention
n the Capto MMC column at the same pH conditions. In fact, the
etention was so strong that a higher salt concentration (1.5 M NaCl)
as required in the B buffer in order to elute a majority of the

ariants from the multimodal column (note: the same number of
olumn volumes was employed in both gradients). Table 2 presents
he retention times of the variants under the linear gradient Capto

MC conditions. In addition, the elution order of the CspB mutant
ibrary relative to the native protein is presented in Fig. 3.

As can be seen in Fig. 3, significant variation in the elution times
as observed for the mutants on the Capto MMC surface. In gen-

ral, variants with more positive surface charge were more strongly
etained and the effects of charge reversal on protein retention
ere more pronounced than the effects of charge neutralization.

owever, there were subtle differences in the retention behavior

hat could be observed with the multimodal resin system. Although
utants where a positive charge was reversed exhibited weaker

etention as compared to native CspB, the elution order of this sub-

ig. 3. Retention time profile of mutant variants on a multimodal weak cation
xchange Capto MMC column [experimental conditions: pH 6.25, 60CV linear salt
radient (Buffer B: Buffer A +1.5 M NaCl)] {*Note: the dotted line and the green
ashed triangles are used to emphasize mutants E43K and E53K not eluting off the
olumn under the experimental conditions} (For interpretation of the references to
olor in this figure legend, the reader is referred to the web version of the article).
ated using M36G as the template.

class of mutants was significantly different from that observed on
the cation exchange resin. For example, mutant R3E which was
moderately retained on the ion exchange resin was found to elute
in the flow through in the multimodal system. On the other hand,
mutant K13E which eluted in the flow through on the ion exchanger
was retained on the multimodal surface, although to a lesser extent
than native CspB.

While weaker retention was observed for the neutralization of
positive charge as compared to reversal of charge at position 42
for both resin systems, the multimodal system also exhibited this
behavior for mutations at position 13. In fact, K42Q had such a sig-
nificant drop in retention on the MMC column that it eluted in the
flow through.

In contrast to other variants where a negative charge was
reversed, mutant D10K exhibited weaker retention on the Capto
MMC surface as compared to the native protein. This is in stark
contrast to the retention behavior observed for this variant on the
cation exchanger. Further, while D10K was the most strongly bound
variant on the cation exchanger, variants E43K and E53K exhib-
ited the strongest retention on the MMC stationary phase. In fact,
these variants did not elute off the MMC column under the given
experimental conditions.

Clearly, these results with both the cation and the multimodal
cation exchange resins indicate that both affinity and selectivity
can be significantly different in these two systems. The fact that
the CspB library was significantly more strongly bound in the MMC
column indicates that electrostatics is likely not the sole mode of
interaction between the protein surface and the MMC resin. While
the effects of altering surface charge on protein retention in ion
exchange can be understood by considering electrostatic poten-
tial maps [16], in multimodal systems these changes can also alter
hydrophobic and hydrogen bonding contributions to binding from
that region of the protein. In order to examine these multimodal
effects in more detail, two theoretical approaches were employed,
namely, QSPR and coarse-grained docking calculations.

3.3. Structure–property modeling of mutant library on Capto
MMC

In order to enable the a priori prediction of protein retention
times in the homologous protein library, a QSPR model was gen-
erated for two “unknown” mutants (E50K and K55E), which were
not included in the model generation. In the training of the QSPR
model, twenty-one of the twenty-seven proteins in the homolo-
gous library were used since six of the proteins were either eluted
in the flow through or were retained too strongly on the column

to be eluted during the gradient. Fig. 4a shows the results of the
QSPR model. The open circles represent the training set molecules
and the dark squares represent the predictions made using test set
molecules. The error bars represent the standard deviation of all
the bootstrapping values of the predictions. The cross-validated r2



W.K. Chung et al. / J. Chromatogr. A 1217 (2010) 191–198 195

F quares
s tal re
f

v
t
m
E
F

3

r
c
o
Q
g
b
t
t
s
m
t
d
t
r
s
s
c
i
d

3

d
M
h
t
c

r
W
s

ig. 4. (a) SVM QSPR model for prediction of the entire data set, where the open s
quares are the results for the test data. (b) Comparison of predicted and experimen
eature selection algorithm.

alue was 0.9677, indicating good agreement between experimen-
al retention times and the predicted results. In addition, the QSPR

odel also provided reasonably good predictions for test mutants
50K (molecule 7) and K55E (molecule 17) as can be seen from
ig. 4b.

.4. Model interpretation

Understanding the underlying relationship between protein
etention in multimodal chromatography and the physicochemi-
al chemical properties of proteins is critical for the development
f multimodal chromatographic processes. In addition to using
SPR models for the a priori prediction of protein chromato-
raphic behavior, the descriptors selected in the model can also
e employed to provide insight into factors that affect the reten-
ion time of proteins in the library. The descriptors resulting from
he feature selection step were employed in a “Star plot” analy-
is to facilitate interpretation. Fig. 4c shows the star plots for the
ost significant descriptors with a threshold of >3% in the model. In

his analysis, each star corresponds to a single selected molecular
escriptor, where the line in each star represents one bootstrap and
he radius of each line indicates the weight of that descriptor in the
elevant sparse SVM model (a more detailed explanation of boot-
trapping and star plots can be found in the references [20–23]. As
een in the figure, eight descriptors were obtained in the 3 general
ategories of charge/electrostatic potential, molecular lipophilic-
ty/hydrophobicity and bond interactions. The definitions of those
escriptors are listed in Table 3.

.4.1. Charge and electrostatic potential (EP) related descriptors
Descriptor “BCUT.PEOE.1” is an adjacency and distance matrix

escriptor calculated by the value of PEOE partial charges from the
OE software. It is a charge related descriptor and exhibited the

ighest weight in the model (37.6%), which indicates the impor-
ance of the protein partial charge in binding in this multimodal

hromatographic system.

The EP2.H and EP2.HF bin type descriptors refer to discrete
anges of EP values that are calculated on the protein Van der

aals surface at pH 6.25. Both types of EP descriptor values are
orted into 10 bins, and each bin contains the sum of the number
indicate the results for the training data set, cross-validated r2 = 0.9677, the solid
tention times for the test set. (c) Star plots for the eight descriptors selected by the

of positions in a particular EP range, where bin 0 is the range of
lowest values and bin 9 is the range of largest values in the protein
library. As seen in Fig. 4c, the “EP2.HF.6.PH6.25” bin descriptor had
a weight of 10.29%, which is a major positive contributor, whereas
the “EP2.H.4.PH6.25” bin descriptor had a negative weight of −6%.
This is due to the fact that bin 6 contains more positive EP values
resulting in attraction in the cationic MM system and bin 4 contains
more negative EP values resulting in repulsion (note: EP descriptors
based on higher bins (>6) or lower bins (<4) represented relatively
small surface areas on the proteins which is probably the reason
that they were not selected in the QSRR model generation proce-
dure). The relatively high weights of these EP descriptors suggest
that the electrostatic interaction between the proteins and the MM
resin play an important role in this MMC system.

3.4.2. Molecular lipophilicity/hydrophobicity related descriptors
Since hydrophobic interactions can also play an important

role in MMC chromatography, it is not surprising that descrip-
tors from the molecular lipophilicity/hydrophobicity category were
selected during the QSPR feature selection process. MLP2.W8 and
MLP2.W10 are molecular lipophilicity potential descriptors which
had weights of 6.6% and 3.7%, respectively in the QSPR model. In
addition, GCUT.SLOGP.0 is a molecular hydrophobicity descriptor
calculated from the MOE software using atomic contributions to
log P (Wildman and Crippen SlogP method) which had a weight of
3.9%. Although these descriptors indicate that hydrophobic inter-
actions played a role in protein retention in the MMC system, the
effect was not as pronounced as electrostatic interactions.

3.4.3. Bond interactions
“E.STR” represents the bond stretch potential energy and

“E.OOP” represents the out-of-plane potential energy, with the
weight of 10.2% and 3.7%, respectively. E.STR is reflective of the
type of residue that is being mutated. For example, arginine and
lysine have relatively higher values whereas asparagine and glu-

tamine have lower values. E.OOP represents the conformational
degree of freedom of the aromatic rings on the protein. Although
no mutations were made that include the aromatic rings, other
mutations can also effect the local protein conformation. Further,
as will be shown below, aromatic rings on the protein surface play
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Table 3
Definitions of selected descriptors.

Categories Descriptors Definition of descriptors Weight

Partial charge and electrical potential (EP)
BCUT.PEOE.l PEOE partial charge descriptor (MOE) +37.6%
EP2.HF.6.PH6.25 Sum of atoms with EP within bin 6 at pH 6.25 divided by

the number of aid points on surface
+10.29%

EP2.H.4.PH6.2? Sum of atoms with EP within bin 4 at pH 6.25 −6.0%

Molecular lipopliilicity/hydropliobicity
MLP2W8 Molecular lipophilicity potential (MLP). Relates to

lipophilicity hydrophobicity properties on a molecular
surface

+6.6%

GCUT.SLOGP.O SlogP descriptor, log of octanol water partition coefficient
(using the Wildman and Crippen SlogP method) (MOE)

+3.9%

a
a
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MLP2W10

Bond
E.STR
E.OOP

n important role in high affinity interaction sites of the MM lig-
nd.

.5. Coarse-grained ligand docking analysis of CspB

Coarse-grained docking simulations were carried out as
escribed in the theoretical section. These simulations produced
set of local minima binding confirmations between the ligands

nd protein which were then grouped into local binding sites, each

f which had a range of possible configurations. The cluster analysis
esults can be seen in Fig. 5a–c. In Fig. 5a and b the colored points
blue = Capto MMC, yellow = SP) represent the center of mass of the
igand for the resulting configuration. Since the traditional cation
xchange ligand has only one major interaction site it showed a

ig. 5. Autodock cluster analysis for representative (a) Capto MMC Ligands (blue sphere
epresent the center of mass of the ligand for the resulting configurations. (c) Energy val
gure legend, the reader is referred to the web version of the article).
Molecular lipophilicity potential (MLP) descriptor [l] +3.7%

Bond stretch potential energy (MOE) +10.2%
Out-of-plane potential energy (MOE) +3.7%

much tighter distribution, only localizing at a few highly charged
regions on the protein surface. In contrast, the multimodal ligand
had a larger distribution around localized binding sites. This is prob-
ably due to the many favorable confirmations that can be obtained
when there are multiple modes of interaction at play.

Comparing the local distribution of the binding sites to the
experimental results shows a good correlation between the bind-
ing sites and residues shown to have large contributions to binding.
For example in Fig. 5b the SP ligand localized near residues 5, 12,

13, 55, and 56, all of which showed a loss of retention in the cation
exchanger upon neutralization or reversal. In Fig. 5a the MMC lig-
and is shown to adsorb favorably near residues 3, 12, 13, 39, 42,
55, and 56; residues that showed significant loss of retention in
the MMC system. By studying the local distribution of binding sites

s). (b) CEX Ligands (yellow spheres) binding to the surface of Native CspB. Spheres
ues for the associated clusters (For interpretation of the references to color in this
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ig. 6. Lowest energy MMC ligand adsorption confirmation at (a) Binding Site 2. The
f Ile 51, and is hydrophobically associated with the sidechains of Leu 2 and Ile 51. (
n H-bond with the backbone of Lys 39, and forms pi–pi stacking between Phe 36 a
ire cylinders (For interpretation of the references to color in this figure legend, th

t can also be seen why mutations on certain residues resulted in
ignificant changes in retention while others did not. For exam-
le, residue 3 showed a dramatic change in retention on the MMC
esin upon neutralization, while the neighboring residues 5 and 7
id not. Upon examination of the local binding distribution around
esidues 3, 5, and 7 the ligand clearly favored interactions with
esidue 3 over the other two. As a result, the loss of the residues 5
nd 7 does not affect the binding of the protein while the removal
f residue 3 would cause an important binding site to disappear.

It is also important to look at how the energetics of interac-
ions plays a role in the binding of the ligands to the protein.
ig. 5c shows the average binding free energy for the different
lusters on the protein’s surface. As can be seen in the figure, the
ultimodal ligand showed stronger binding relative to the tra-

itional cation-exchange ligand, which agrees with the stronger
etention of the protein observed on the multimodal resin. This is
robably due to the combined energies from multiple interaction
ypes. The traditional ion-exchanger showed the expected inter-
ction energy resulting from a single charge reinforced hydrogen
ond (approximately 2 kcal/mol). The multimodal ligand displayed
wider range of interaction potentials indicate of multiple pos-

ible modes of interaction. While the higher energy site clusters
1–4) showed the effects of additional hydrophobic interactions
nd hydrogen bonding sites, the lower energy site clusters (5–7)
ere very similar to the traditional ion exchanger since they were
ostly charger–charge interactions with minor additional van der
aals contacts.
A better understanding of the way multiple interactions can play

role in the increased binding energies can be seen by examining
he ligand confirmations within a binding site on the protein sur-
ace. Fig. 6a and b shows representative views of the ligand in the
igh energy binding sites 2 and 3 defined in Fig. 5a (note: in this
gure only the portion of the protein surface that directly interacts
ith the ligand is shown). The ligand in Fig. 6a is electrostati-

ally interacting with the N-terminus, has an additional hydrogen
ond with the backbone of isoleucine 51, and is hydrophobically
ssociated with leucine 2 and isoleucine 51. Fig. 6b shows the lig-
nd in its next lowest energy binding site. Here the ligand has
charge–charge bond with lysine 39, additional hydrogen bond
ith the backbone of residue 39, and is able to form a pi–pi

tacking between phenylalanines 36 and 38. By forming strong
nteractions with several residues, the ligand is able to attach with

ore than double the strength of a traditional cation exchange
igand. Further, the addition of interaction types beyond simple
lectrostatics alters how the protein-resin system reacts to the

ddition of salts or other mobile phase modifiers. The importance of
lectrostatics and hydrophobic interactions shown in these ligand
ocking calculations was also indicated in the molecular descrip-
ors selected in the QSPR analysis. However, it should be noted that
hese coarse-grained docking simulations were performed using
has a charge reinforced H-bond with the N-terminus, an H-bond with the backbone
ding Site 3. The ligand has a charge reinforced H-bond with the sidechain of Lys 39,
. Hydrogen bonds are highlighted in green dots, pi–pi stacking effects are shown in
er is referred to the web version of the article).

representative chromatographic ligands in free solution. Ligand
immobilization onto the resin surface will likely pose steric lim-
itations and these will be studied in the future using a variety of
experimental (EPR and NMR) and simulation (molecular dynamics)
techniques.

4. Conclusions

A homologous library of mutant variants was used to examine
the effects of charge modification on protein retention on a multi-
modal cation exchange surface. The protein library was observed
to bind more strongly on the multimodal cation exchange resin
as compared to the traditional cation exchanger due to the syn-
ergistic effects arising from the multiple modes of interaction
between the ligand and the protein surface. Significant differences
in elution order of the variants were also seen on the two chromato-
graphic surfaces indicating that the proteins may have different
preferred binding regions on the two resin surfaces. On the cation
exchanger, charge modification altered protein retention to dif-
ferent extents, depending on the location and microenvironment
of the mutated amino acid. However, on the multimodal resin,
the effects of charge modifications were more complex due to
the various protein–ligand interactions that can take place within
a single binding region on the protein surface. QSPR was shown
to be able to provide good predictions of protein retention time
in the MM system and molecular descriptors selected during the
model generation indicated that electrostatic and hydrophobic
interactions were the primary modes of interaction. The use of
Autodock provided insight into various protein–ligand interactions
that can occur within a single binding site resulting in stronger
binding energetics for a multimodal ligand as compared to the
cation exchange ligand. In addition, the nature of the multimodal
ligand enables it to interact with a larger proportion of the pro-
tein surface unlike the cation exchange ligand which is restricted
to concentrated charged regions of the protein surface. Although
ligand–protein docking programs like Autodock can provide insight
into multimodal ligand–protein interactions, future work in our
lab on using NMR with labeled proteins and full MD simulations
will provide further insight in the nature of selectivity in MM chro-
matographic systems. Further, future work will employ a variety of
experimental (EPR and NMR) and simulation (molecular dynam-
ics) techniques to study protein interactions in solid phase MM
systems.
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